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Non-Markovian thermal relaxation at elevated temperatures
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The exit problem out of a metastable well is studied, at all temperatures, for an overdamped

Brownian particle.

The exact time dependent exit probability is derived for a free particle and

this solution is found to contain all qualitative features characterizing the numerically analyzed
escape out of a metastable well: At sufficiently large times there always exists a Markovian limit to
the exit problem and the approach to this limit is governed by the initial position of the diffusing
particle. Particles originating near the bottom of the well are found to approach, with decreasing
temperature, the Markovian relaxation law uniformly, whereas particles originating closer to the
edges of the metastable region approach this limit in a complicated, nonuniform fashion.

PACS number(s): 05.40.+j, 02.50.Ey

Calculations of thermal relaxation rate (see, e.g., the
review by Hanggi et al. [1]) are based on the assumption
that the metastable relaxing system finds itself in a qua-
sistationary state characterized by a time independent
outward probability flux [2]. The occupation probability
of the system is then given by a Markovian (exponen-
tial) decay law. This formulation of the exit problem is
known to be justified [1] in the limit of low temperatures
(small noise intensity); however, the question of what
constitutes, for a given system, a sufficiently low temper-
ature remains unanswered nor has the non-Markovian
exit problem been systematically studied.

We solve here, at all temperatures T, the exit problem
for an overdamped Brownian particle in potential V(z).
For simplicity we assume the potential to be symmetric,
V(z) = —V(z), with a single minimum at z = 0 where
V(0) = 0 and we place absorbing boundaries at the edges
of the interval (—zo, zo). The exit problem is character-
ized by two quantities: First, by the mean first passage
(MFP) time 74(y) where ¢ = V(z0)/kpT is the reduced
barrier height and y the initial position of the particle,
|y| < zo, and secondly by the probability n4(¢,y) that
the particle has not exited the interval (—zg,zo) by the
time ¢t > 0; obviously, 74(y) = fooo dtng(t,y). In the low
temperature limit, ¢ — oo, the MFP time 7,(y) ~ e? is
independent [1] of y and [3]

ng(t,y) = exp[—t/74(y)]. (1)

We find that at elevated temperatures the approach to
this Markovian limit is governed by the initial position
of the diffusing Brownian particle and we distinguish a
uniform approach regime for particles originally located
near the bottom of the well and a nonuniform approach
regime for particles which start off closer to the edge of
the metastable region. In the first case, in particular,
the high temperature non-Markovian decay is found to
be slower than the exponential decay (1) at times ¢t <
Tq(y) but comparatively faster at ¢ > 74(y). This finding
is of interest in that similar behavior has recently been

1063-651X/95/52(6)/6892(4)/$06.00 52

observed (but at low temperatures) experimentally, in
isolated ferromagnetic particles [4].

The Langevin equation (p. 197 of Ref. [5]) for an over-
damped Brownian particle is

dr = —n 'V'(z)dt + /20~ 1Tdw(t) (2)

where 7 is a dissipation constant, w(t) is a Wiener pro-
cess, and V' = dV/dz [6]. Throughout the paper we shall
use the dimensionless variables ¢ — z/x, (x, is an arbi-
trary length scale) and ¢t — t/t, (t, = nz2/T) and the
dimensionless potential V(z) — V(z)/kgT. In terms of
these variables the Fokker-Planck (Smoluchowski) equa-
tion for the random process (2) becomes

5(39_1; = a% [V’(a:)P + Z—ﬂ (3)

where P = P(z,t|y,0) is the instanteneous probability
distribution of a Brownian particle initially located at
the point y. We impose on Eq. (3) the absorbing (p. 136
of Ref. [5]) boundary conditions P(+xo,t|y,0) = 0 and
for simplicity restrict ourselves to the symmetric initial
conditions

P(z,0]y,0) = [6(z + y) + 6(= — y)]/2. (4)

The probability of finding the Brownian particle in the
metatstable region at ¢ > 0 is

ng(t,y) = /1’0 dz P(z,t|y,0) def g _ A dt’ gq(t',y) (5)

—x0

where the second integral defines the exit times distri-
bution g4(t,y). Integrating Eq. (3) over the metastable
domain and making use of the symmetry of the problem
we obtain further the useful representation [7]

1q(t,y) = 2Pz (z0,t|y,0) = —gq(t,y), (6)
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ng = dng/dt, and P, = OP/0x. The MFP time proper is
in our case given by the simple formula (p. 139 of Ref. [5]

o T
Tq(y) = / dx eV(”’)/O dz e V), (7)
y

in particular, 7o(y) = (z2 —
Vi(z) =0.

The Fokker-Planck equation (3) with the given initial
and boundary conditions is solved here for the harmonic
potential V(z) = (a/2)z? and for the sinusoidal potential
V(z) = 2vsin? z; in either case we set 2o = m/2. For the
harmonic potential we employ Siegert’s integral equation
formalism [7] in which the occupation probability ng(¢,y)
satisfies the equation

y2)/2 for a free particle with

2”‘1(t’ y) = G(ta y) + G(tv —y)

+ /t dt' tg(', )Gt — t', z0)
+G(t —t', —zp)] (8)

where G(t,z) = Erf[f(t)(1 + ze~ )], f(t) = (a/2)/?[1 —
e~29t71/2 and Erf(zx) is the error function. These ex-
pressions are based on the infinite-medium fundamental
solution [8] of Eq. (3) for the harmonic potential,

[z — yeva(tft’)]z }

G(z,tly,t') P2 =)

—_— 1 — p—
= S Tr— exp
(9)

but analogous fundamental solutions for nonharmonic
potentials are not known to us and for this reason we
solve Eq. (3) also by expanding the Laplace transform of
the distribution P(z,t|y,0), P(z,ply,0), in the Fourier
series

= Z azk+1(p,y) cos(2k + 1)z
k=0

P(z,ply,0) (10)

which satisfies the absorbing boundary conditions. The
Laplace transform of Eq. (6) yields

Phg(p,y) —1 =2 (=1)*azkt1(2k + 1) = —gq(p,v)
k=0

(11)

and for the sinusoidal potential we find that the coef-
ficients Aakt1 = a2x+1(2k + 1) satisfy an infinite tri-
diagonal system of linear equations which is easily solved
numerically with arbitrary precision [9]:

d1 = (p +1-— ’U)Al + ’UA3/3, (12)
dak+1 = —VO2p—1A2k—1 + O2k+1(P) Azk+1
+v02k+3A2k43, (13)

k > 0. The coefficients of the linear system are o271 =
(2k + 1)/(2k — 1), o2ky3 = (2k + 1)/(2k + 3), and
o2k+1(p) = p/(2k + 1) + 2k + 1 and the absolute terms
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FIG. 1. The function po(p,y) = [1 + 7o(y)]go(p,y) vs
p7o(y) = p(xi — y?)/2 for selected values of the initial po-
sition y. There is 2zo/m = 1 and, consecutively, 2y/7 = 0
(labeled), 0.3, 0.5, 0.6, 0.7, 0.8, and 0.9 (labeled).

are the Fourier components of the initial distribution (4),
dak+1 = (2/7) cos(2k + 1)y.

The Volterra integral equation (8) is particularly in-
structive in that it is exactly solvable in the limit of a
free particle, i.e., as a — 0, where we obtain [10]

coshy,/p

_ 14
coshzo./p (14)

gO(pa y) =

Tq<Y>e-q

1 V0=(4g/m)nE
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FIG. 2. The scaled MFP time 74(y)e”?, i.e., the in-
verse prefactor, for the two potential wells discussed in text.
2zo/m = 1 and the initial position 2y/7 = 0 (topmost curves),
0.5, 0.7, and 0.8 (lowermost curves). We write here 2v = ¢
and a/2 = 4q/n? for clarity.
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FIG. 3. Occupation probability n,(t,y) of a harmonic well
vs the reduced time t/74(y) for two values of the initial po-
sition y < zo = 7/2 and 2¢ = 0, 3, 5, and 9. For y = 0
only the free particle, g = 0, curve is labeled; with increasing
g these curves uniformly approach the exponential decay law
(1) which is shown in long dash and marked by an arrow. The
remaining curves are labeled by the value of 2q.

In particular, go(p,y) =~ [1 + To(y)p]~! for zep'/? < 1,
so that the long time exit behavior of a free particle is
Markovian by virtue of the definition (5). The distri-
bution of exit times for a particle in a potential field is
expected to have a long time Markovian limit as well and
Eq. (14) therefore represents a useful example of its pos-
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FIG. 4. The function pe(p,y) of Eq. (15) for a sinusoidal
potential. The initial position y = 0, zo = 7/2 and the values
of q are given by the curve labels. Dashed line is the free
particle solution of Fig. 1.
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sible behavior. The function go(p,y) monotonically de-
creases along the real positive p axis and is exponentially
small as p — oo but we find that a better qualitative in-
sight into the non-Markovian relaxation process is gained
by considering the ratio

(15)

which becomes identically equal to unity in the strict
Markovian limit (1). For all y/zo € (0,1) the func-
tion po(p,y) has a local extremum at p = 0 but for
y/zo > 57/2 ~ 0.4472 it also has a local maximum along
the real positive axis (see Fig. 1) and we shall presently
show that the occurrence of this maximum heralds a sig-
nificant change in the nature of the non-Markovian relax-
ation process and in the mode of approach towards the

Pe(Py) = 1+ 74(y)] 94(p, y)
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FIG. 5. The function pg(p,y) of Eq. (15) for a sinusoidal
potential. The initial positions are 2y/m = 0.4 (top) and 0.5
(bottom), zo = m/2, and the values of q are given by the curve
labels. Dashed lines are the free particle solutions of Fig. 1.
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Markovian limit. Further qualitative insight is obtained
by comparing the MFP times (7) for the two potentials.
According to Fig. 2 74(y) for the harmonic potential is, at
a given g, always smaller than for the sinusoidal potential
but, at the same time, it becomes independent of the ini-
tial position y at lower values of q. The rate with which
the curves 7,4(y) converge is apparently related to the well
shape and Fig. 2 suggests that escape out of a harmonic
well reaches its Markovian limit at higher temperatures
(smaller g) than escape out of the smooth sinusoidal well.

The foregoing discussion allows us now to interpret the
results of numerical calculations. Equation (8) for the
probability out of the harmonic well yields the real time
solutions ng(t,y) which we plot in Fig. 3 while Eq. (11)
yields only the Laplace transform of the exit times dis-
tribution out of the sinusoidal well and in Figs. 4 and 5
we plot the ratio pq(p,y) of Eq. (15). The two families of
plots are, however, closely related and will be discussed
together.

According to Fig. 3 the non-Markovian relaxation from
inital position y = 0 is slower than the exponential law
(1) at times t < 74(0) but faster than (1) for ¢ > 7,(0). It
is not clear to us whether the fact that ng[74(0),0] = e~ !
for all ¢ is an artifact of the harmonic potential, though
apparently this effect is not related to the symmetry im-
posed on the problem since the common intercept does
not exist for any y > 0. Plots of the ratio pq(p,0) are
presented (for the sinusoidal potential) in Fig. 4. With
increasing ¢ these curves uniformly approach the Marko-
vian limit pg(p,0) = 1 and this behavior is also quite
obvious from the real time plots of Fig. 3. At the same
time, however, there is lim,_,o pq(p,y) = 0 so that the
very short time exit behavior is always nonexponential.
Essentially the same behavior is found also for sufficiently
small y > 0, 2y/m < 0.3; in this case, however, the com-
mon intercept is only approximate, located at t > 74(y).
It should also be noted that at barrier heights q for which
the escape out of the harmonic well is almost Markovian
the plots of Fig. 4 are decidedly non-Markovian, quite in
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accordance with our analysis of the MFP times of Fig. 2.

A qualitatively distinct, nonuniform approach to the
Markovian limit is found for large values of the initial po-
sition y where the function po(p, y) has a local maximum
along the real positive axis. The nature of this nonuni-
form mode of approach is readily apparent from Fig. 5
(bottom) where we present plots of the function p4(p,y)
for 2y/m = 0.5. The limiting behavior is not so clearly
discernible from the complicated real time behavior of the
probabilities ng4(t,y) which are shown for 2y/m = 0.5 in
Fig. 3. These curves, however, offer a marked difference
to the time dependence of the uniform mode discussed in
the previous section: At extremely short times the decay
is, as before, slower than the exponential law (1), how-
ever, it becomes significantly faster in its intermediate
states and slows down again at large times, ¢t > 74(y).
In other words, apart from its initial stage the relaxation
process now exhibits behavior exactly opposite to the
time dependence of the uniform mode discussed in the
preceding paragraph.

From the extremal properties of the free particle func-
tion po(p,y) we deduced that the nonuniform mode sets
in at y/xo = 5°/2 but Fig. 5 (top) shows that for
V'(z) # 0 the critical value is, in fact, less, y/zo <
1/5=1/2. The small ¢ curves here resemble those of the
uniform mode whereas for intermediate and large ¢ val-
ues they develop characteristics of the nonuniform mode.
The real time functions ny(¢,y) interpolate between the
uniform and nonuniform modes of behavior as well.

In summary, we find that the free particle solution (14)
contains all qualitative features characterizing thermally
activated escape out of a metastable well. In particular,
the Markovian limit of exponential decay always exists at
sufficiently large times and so do the uniform and nonuni-
form approach modes. If the diffusing particle is confined
in a metastable well then the Markovian limit is attained
at shorter times, the transition point between the uni-
form and nonuniform modes is shifted towards lower val-
ues but no qualitatively new feature is introduced.
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